Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Brain Res ; 241(11-12): 2829-2843, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898579

RESUMO

Transcranial magnetic stimulation (TMS) studies typically focus on suprathreshold motor evoked potentials (MEPs), overlooking small MEPs representing subthreshold corticomotor pathway activation. Assessing subthreshold excitability could provide insights into corticomotor pathway integrity and function, particularly in neurological conditions like stroke. The aim of the study was to examine the test-retest reliability of metrics derived from a novel compositional analysis of MEP data from older adults. The study also compared the composition between the dominant (D) and non-dominant (ND) sides and explored the association between subthreshold responses and resting motor threshold. In this proof-of-concept study, 23 healthy older adults participated in two identical experimental sessions. Stimulus-response (S-R) curves and threshold matrices were constructed using single-pulse TMS across intensities to obtain MEPs in four upper limb muscles. S-R curves had reliable slopes for every muscle (Intraclass Correlation Coefficient range = 0.58-0.88). Subliminal and suprathreshold elements of the threshold matrix showed good-excellent reliability (D subliminal ICC = 0.83; ND subliminal ICC = 0.79; D suprathreshold ICC = 0.92; ND suprathreshold ICC = 0.94). By contrast, subthreshold elements of the matrix showed poor reliability, presumably due to a floor effect (D subthreshold ICC = 0.39; ND subthreshold ICC = 0.05). No composition differences were found between D and ND sides (suprathreshold BF01 = 3.85; subthreshold BF01 = 1.68; subliminal BF01 = 3.49). The threshold matrix reliably assesses subliminal and suprathreshold MEPs in older adults. Further studies are warranted to evaluate the utility of compositional analyses for assessing recovery of corticomotor pathway function after neurological injury.


Assuntos
Músculo Esquelético , Estimulação Magnética Transcraniana , Humanos , Idoso , Músculo Esquelético/fisiologia , Reprodutibilidade dos Testes , Potencial Evocado Motor/fisiologia , Extremidade Superior , Eletromiografia
2.
Cereb Cortex ; 33(17): 9729-9740, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37395336

RESUMO

Selective response inhibition may be required when stopping a part of a multicomponent action. A persistent response delay (stopping-interference effect) indicates nonselective response inhibition during selective stopping. This study aimed to elucidate whether nonselective response inhibition is the consequence of a global pause process during attentional capture or specific to a nonselective cancel process during selective stopping. Twenty healthy human participants performed a bimanual anticipatory response inhibition paradigm with selective stop and ignore signals. Frontocentral and sensorimotor beta-bursts were recorded with electroencephalography. Corticomotor excitability and short-interval intracortical inhibition in primary motor cortex were recorded with transcranial magnetic stimulation. Behaviorally, responses in the non-signaled hand were delayed during selective ignore and stop trials. The response delay was largest during selective stop trials and indicated that stopping-interference could not be attributed entirely to attentional capture. A stimulus-nonselective increase in frontocentral beta-bursts occurred during stop and ignore trials. Sensorimotor response inhibition was reflected in maintenance of beta-bursts and short-interval intracortical inhibition relative to disinhibition observed during go trials. Response inhibition signatures were not associated with the magnitude of stopping-interference. Therefore, nonselective response inhibition during selective stopping results primarily from a nonselective pause process but does not entirely account for the stopping-interference effect.


Assuntos
Atenção , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Eletroencefalografia , Estimulação Magnética Transcraniana , Potencial Evocado Motor/fisiologia
3.
Exp Brain Res ; 241(2): 601-613, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36635589

RESUMO

Response inhibition is essential for terminating inappropriate actions and, in some cases, may be required selectively. Selective stopping can be investigated with multicomponent anticipatory or stop-signal response inhibition paradigms. Here we provide a freely available open-source Selective Stopping Toolbox (SeleST) to investigate selective stopping using either anticipatory or stop-signal task variants. This study aimed to evaluate selective stopping between the anticipatory and stop-signal variants using SeleST and provide guidance to researchers for future use. Forty healthy human participants performed bimanual anticipatory response inhibition and stop-signal tasks in SeleST. Responses were more variable and slowed to a greater extent during the stop-signal than in the anticipatory paradigm. However, the stop-signal paradigm better conformed to the assumption of the independent race model of response inhibition. The expected response delay during selective stop trials was present in both variants. These findings indicate that selective stopping can successfully be investigated with either anticipatory or stop-signal paradigms in SeleST. We propose that the anticipatory paradigm should be used when strict control of response times is desired, while the stop-signal paradigm should be used when it is desired to estimate stop-signal reaction time with the independent race model. Importantly, the dual functionality of SeleST allows researchers flexibility in paradigm selection when investigating selective stopping.


Assuntos
Inibição Psicológica , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Voluntários Saudáveis
4.
J Neurosci ; 43(6): 1008-1017, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36609455

RESUMO

Response inhibition is essential for terminating inappropriate actions. A substantial response delay may occur in the nonstopped effector when only part of a multieffector action is terminated. This stopping-interference effect has been attributed to nonselective response inhibition processes and can be reduced with proactive cuing. This study aimed to elucidate the role of interhemispheric primary motor cortex (M1-M1) influences during selective stopping with proactive cuing. We hypothesized that stopping-interference would be reduced as stopping certainty increased because of proactive recruitment of interhemispheric facilitation or inhibition when cued to respond or stop, respectively. Twenty-three healthy human participants of either sex performed a bimanual anticipatory response inhibition paradigm with cues signaling the likelihood of a stop-signal occurring. Dual-coil transcranial magnetic stimulation was used to determine corticomotor excitability (CME), interhemispheric inhibition (IHI), and interhemispheric facilitation (IHF) in the left hand at rest and during response preparation. Response times slowed and stopping-interference decreased with increased stopping certainty. Proactive response inhibition was marked by a reduced rate of rise and faster cancel time in electromyographical bursts during stopping. There was a nonselective release of IHI but not CME from rest to in-task response preparation, whereas IHF was not observed in either context. An effector-specific reduction in CME but no reinstatement of IHI was observed when the left hand was cued to stop. These findings indicate that stopping speed and selectivity are better with proactive cueing and that interhemispheric M1-M1 channels modulate inhibitory tone during response preparation to support going but not proactive response inhibition.SIGNIFICANCE STATEMENT Response inhibition is essential for terminating inappropriate actions and, in some cases, may be required for only part of a multieffector action. The present study examined interhemispheric influences between the primary motor cortices during selective stopping with proactive cuing. Stopping selectivity was greater with increased stopping certainty and was marked by proactive adjustments to the hand cued to stop and hand cued to respond separately. Inhibitory interhemispheric influences were released during response preparation but were not directly involved in proactive response inhibition. These findings indicate that between-hand stopping can be selective with proactive cuing, but cue-related improvements are unlikely to reflect the advance engagement of interhemispheric influences between primary motor cortices.


Assuntos
Inibição Neural , Estimulação Magnética Transcraniana , Humanos , Inibição Neural/fisiologia , Tempo de Reação/fisiologia , Mãos/fisiologia , Sinais (Psicologia) , Potencial Evocado Motor , Lateralidade Funcional
5.
Exp Brain Res ; 240(12): 3289-3304, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308563

RESUMO

The primary motor cortex (M1) is critical for movement execution, but its role in motor skill acquisition remains elusive. Here, we examine the role of M1 intracortical circuits during skill acquisition. Paired-pulse transcranial magnetic stimulation (TMS) paradigms of short-interval intracortical facilitation (SICF) and inhibition (SICI) were used to assess excitatory and inhibitory circuits, respectively. We hypothesised that intracortical facilitation and inhibition circuits in M1 would be modulated to support acquisition of a novel visuomotor skill. Twenty-two young, neurologically healthy adults trained with their nondominant hand on a skilled and non-skilled sequential visuomotor isometric finger abduction task. Electromyographic recordings were obtained from the nondominant first dorsal interosseous (FDI) muscle. Corticomotor excitability, SICF, and SICI were examined before, at the midway point, and after the 10-block motor training. SICI was assessed using adaptive threshold-hunting procedures. Task performance improved after the skilled, but not non-skilled, task training, which likely reflected the increase in movement speed during training. The amplitudes of late SICF peaks were modulated with skilled task training. There was no modulation of the early SICF peak, SICI, and corticomotor excitability with either task training. There was also no association between skill acquisition and SICF or SICI. The findings indicate that excitatory circuitries responsible for the generation of late SICF peaks, but not the early SICF peak, are modulated in motor skill acquisition for a sequential visuomotor isometric finger abduction task.


Assuntos
Potencial Evocado Motor , Córtex Motor , Destreza Motora , Estimulação Magnética Transcraniana , Adulto , Humanos , Eletromiografia , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana/métodos , Análise e Desempenho de Tarefas
6.
J Neurosci ; 42(2): 156-165, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022327

RESUMO

Response inhibition is an essential aspect of cognitive control that is necessary for terminating inappropriate preplanned or ongoing responses. Response-selective stopping represents a complex form of response inhibition where only a subcomponent of a multicomponent action must be terminated. In this context, a substantial response delay emerges on unstopped effectors after the cued effector is successfully stopped. This response delay has been termed the stopping interference effect. Converging lines of evidence indicate that this effect results from a global response inhibition mechanism that is recruited regardless of the stopping context. However, behavioral observations reveal that the stopping interference effect may not always occur during selective stopping. This review summarizes the behavioral and neural signatures of response inhibition during selective stopping. An overview of selective stopping contexts and the stopping interference effect is provided. A "restart" model of selective stopping is expanded on in light of recent neurophysiological evidence of selective and nonselective response inhibition. Factors beyond overt action cancellation that contribute to the stopping interference effect are discussed. Finally, a pause-then-cancel model of action stopping is presented as a candidate framework to understand stopping interference during response-selective stopping. The extant literature indicates that stopping interference may result from both selective and nonselective response inhibition processes, which can be amplified or attenuated by response conflict, task familiarity, and functional coupling.


Assuntos
Inibição Psicológica , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Eletroencefalografia , Humanos
7.
J Neurophysiol ; 127(1): 188-203, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936517

RESUMO

Response inhibition is essential for goal-directed behavior within dynamic environments. Selective stopping is a complex form of response inhibition where only part of a multieffector response must be cancelled. A substantial response delay emerges on unstopped effectors when a cued effector is successfully stopped. This stopping-interference effect is indicative of nonselective response inhibition during selective stopping, which may, in part, be a consequence of functional coupling. The present study examined selective stopping of (de)coupled bimanual responses in healthy human participants of either sex. Participants performed synchronous and asynchronous versions of an anticipatory stop-signal paradigm across two sessions while mu (µ) and beta (ß) rhythms were measured with electroencephalography. Results showed that responses were behaviorally decoupled during asynchronous go trials and the extent of response asynchrony was associated with lateralized sensorimotor µ- and ß-desynchronization during response preparation. Selective stopping produced a stopping-interference effect and was marked by a nonselective increase and subsequent rebound in prefrontal and sensorimotor ß. In support of the coupling account, stopping-interference was smaller during selective stopping of asynchronous responses and negatively associated with the magnitude of decoupling. However, the increase in sensorimotor ß during selective stopping was equivalent between the stopped and unstopped hand irrespective of response synchrony. Overall, the findings demonstrate that decoupling facilitates selective stopping after a global pause process and emphasizes the importance of considering the influence of both the go and stop context when investigating response inhibition.NEW & NOTEWORTHY Humans rely on their ability to stop preplanned or ongoing movements. The present study identified neural signatures of response preparation and inhibition from electroencephalography during selective stopping of coupled and decoupled bimanual responses. Stopping was more selective for decoupled compared with coupled responses and supported by lateralization of sensorimotor mu and beta power during response preparation. These findings demonstrate that decoupling may have functional significance for understanding cognitive control in the form of selective stopping.


Assuntos
Ondas Encefálicas/fisiologia , Eletroencefalografia , Função Executiva/fisiologia , Mãos/fisiologia , Inibição Psicológica , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
8.
Exp Brain Res ; 239(12): 3431-3438, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34499187

RESUMO

Participation in physical activity benefits brain health and function. Cognitive function generally demonstrates a noticeable effect of physical activity, but much less is known about areas responsible for controlling movement, such as primary motor cortex (M1). While more physical activity may support M1 plasticity in older adults, the neural mechanisms underlying this beneficial effect remain poorly understood. Aging is inevitably accompanied by diminished motor performance, and the extent of plasticity may also be less in older adults compared with young. Motor complications with aging may, perhaps unsurprisingly, contribute to reduced physical activity in older adults. While the development of non-invasive brain stimulation techniques have identified that human M1 is a crucial site for learning motor skills and recovery of motor function after injury, a considerable lack of knowledge remains about how physical activity impacts M1 with healthy aging. Reducing impaired neural activity in older adults may have important implications after neurological insult, such as stroke, which is more common with advancing age. Therefore, a better understanding about the effects of physical activity on M1 processes and motor learning in older adults may promote healthy aging, but also allow us to facilitate recovery of motor function after neurological injury. This article will initially provide a brief overview of the neurophysiology of M1 in the context of learning motor skills, with a focus on healthy aging in humans. This information will then be proceeded by a more detailed assessment that focuses on whether physical activity benefits motor function and human M1 processes.


Assuntos
Envelhecimento Saudável , Córtex Motor , Idoso , Potencial Evocado Motor , Exercício Físico , Humanos , Aprendizagem , Destreza Motora , Estimulação Magnética Transcraniana
9.
J Neurophysiol ; 123(5): 1775-1790, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186435

RESUMO

Stroke is a leading cause of death and disability worldwide with many people left with impaired motor function. Evidence from experimental animal models of stroke indicates that reducing motor cortex inhibition may facilitate neural plasticity and motor recovery. This study compared primary motor cortex (M1) inhibition measures over the first 12 wk after stroke with a cohort of age-similar healthy controls. The excitation-inhibition ratio and gamma-aminobutyric acid (GABA) neurotransmission within M1 were assessed using magnetic resonance spectroscopy and threshold hunting paired-pulse transcranial magnetic stimulation respectively. Upper limb impairment and function were assessed with the Fugl-Meyer Upper Extremity Scale and Action Research Arm Test. Patients with a functional corticospinal pathway had motor-evoked potentials on the paretic side and exhibited better recovery from upper limb impairment and recovery of function than patients without a functional corticospinal pathway. Compared with age-similar controls, the neurochemical balance in terms of the excitation-inhibition ratio was greater within contralesional M1 in patients with a functional corticospinal pathway. There was evidence for elevated long-interval inhibition in both ipsilesional and contralesional M1 compared with controls. Short-interval inhibition measures differed between the first and second phases, with evidence for elevation of the former only in ipsilesional M1 and no evidence of disinhibition for the latter. Overall, findings from transcranial magnetic stimulation indicate an upregulation of GABA-mediated tonic inhibition in M1 early after stroke. Therapeutic approaches that aim to normalize inhibitory tone during the subacute period warrant further investigation.NEW & NOTEWORTHY Magnetic resonance spectroscopy indicated higher excitation-inhibition ratios within motor cortex during subacute recovery than age-similar healthy controls. Measures obtained from adaptive threshold hunting paired-pulse transcranial magnetic stimulation indicated greater tonic inhibition in patients compared with controls. Therapeutic approaches that aim to normalize motor cortex inhibition during the subacute stage of recovery should be explored.


Assuntos
Potencial Evocado Motor/fisiologia , AVC Isquêmico/metabolismo , AVC Isquêmico/fisiopatologia , Córtex Motor/metabolismo , Córtex Motor/fisiopatologia , Inibição Neural/fisiologia , Ácido gama-Aminobutírico/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Estimulação Magnética Transcraniana
10.
Exp Brain Res ; 238(7-8): 1745-1757, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32222776

RESUMO

Modulation of GABA-mediated inhibition in primary motor cortex (M1) is important for the induction of training-induced plasticity. The downregulation of inhibition during acquisition may promote cortical reorganization, whereas an upregulation once performance has plateaued may promote consolidation of the newly acquired skill. GABA-related inhibition in human M1 is routinely assessed using the paired-pulse transcranial magnetic stimulation (TMS) paradigm of short-interval intracortical inhibition (SICI). However, modulation of SICI with motor skill learning is not a consistent finding and may be influenced by TMS parameters. The aim of this study was to compare the modulation of SICI by motor skill learning between conventional and adaptive threshold-hunting techniques with an anterior-posterior and posterior-anterior induced current. Sixteen participants (21-33 years) trained with their dominant (right) hand on a sequential visual isometric pinch task. Electromyographic recordings were obtained from the right first dorsal interosseous muscle. Corticomotor excitability and SICI were examined before and immediately after 12 blocks of training. Skill increased throughout the training, with performance plateauing before completion. Corticomotor excitability increased after motor training for both current directions. The amount of SICI was greater with anterior-posterior stimulation than posterior-anterior for both conventional and adaptive threshold-hunting techniques. SICI increased after motor training, but only for adaptive threshold-hunting with an anterior-posterior-induced current. The increased GABA-mediated inhibition evident after motor skill learning may promote consolidation of the newly acquired skill. The findings also support the notion that adaptive threshold-hunting SICI using an anterior-posterior current provides an effective assessment in interventional studies.


Assuntos
Córtex Motor , Destreza Motora , Estimulação Magnética Transcraniana , Eletromiografia , Potencial Evocado Motor , Humanos , Inibição Neural
11.
Clin Neurophysiol ; 131(4): 791-798, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32066097

RESUMO

OBJECTIVE: Motor learning is relevant in chronic stroke for acquiring compensatory strategies to motor control deficits. However, the neurophysiological mechanisms underlying motor skill acquisition with the paretic upper limb have received little systematic investigation. The aim of this study was to assess the modulation of corticomotor excitability and intracortical inhibition within ipsilesional primary motor cortex (M1) during motor skill learning. METHODS: Ten people at the chronic stage after stroke and twelve healthy controls trained on a sequential visuomotor isometric wrist extension task. Skill was quantified before, immediately after, 24 hours and 7 days post-training. Transcranial magnetic stimulation was used to examine corticomotor excitability and short- and long-interval intracortical inhibition (SICI and LICI) pre- and post-training. RESULTS: The patient group exhibited successful skill acquisition and retention, although absolute skill level was lower compared with controls. In contrast to controls, patients' ipsilesional corticomotor excitability was not modulated during skill acquisition, which may be attributed to excessive ipsilesional LICI relative to controls. SICI decreased after training for both patient and control groups. CONCLUSIONS: Our findings indicate distinct inhibitory networks within M1 that may be relevant for motor learning after stroke. SIGNIFICANCE: These findings have potential clinical relevance for neurorehabilitation adjuvants aimed at augmenting the recovery of motor function.


Assuntos
Córtex Cerebral/fisiopatologia , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana
12.
J Neurophysiol ; 122(4): 1357-1366, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31339791

RESUMO

Response inhibition reflects the process of terminating inappropriate preplanned or ongoing movements. When one hand is cued to stop after preparing a bimanual response (Partial trial), there is a substantial delay on the responding side. This delay is termed the interference effect and identifies a constraint that limits selective response inhibition. γ-Aminobutyric acid (GABA)-mediated networks within primary motor cortex (M1) may have distinct roles during response inhibition. In this study we examined whether the interference effect is the consequence of between-hand "coupling" into a unitary response and whether this is reflected in GABAergic intracortical inhibition within M1. Eighteen healthy right-handed participants performed a bimanual synchronous and asynchronous anticipatory response inhibition task. Electromyographic recordings were obtained from the first dorsal interosseous muscle bilaterally. Motor evoked potentials were elicited by single- and paired-pulse transcranial magnetic stimulation over right M1. As expected, Go trial performance was better with the synchronous compared with the asynchronous version of the task. Paradoxically, response delays during Partial trials were longer with the synchronous compared with the asynchronous task. Although task difficulty did not modulate GABAergic intracortical inhibition, there was a trend for between-hand coupling on asynchronous trials to be associated with greater GABAB receptor-mediated inhibition and lesser recruitment of GABAA receptor-mediated inhibition. The novel findings indicate that the interference effect is in part a consequence of between-hand coupling into a unitary response during movement preparation. The ability to respond independently with the two hands may rely on modulation of distinct inhibitory processes.NEW & NOTEWORTHY The temporal dynamics of an anticipated response task were manipulated to effect the difficulty of behavioral stopping and the underlying effects on motor neurophysiology. There were large response delays during trials where a subcomponent of an upcoming bimanual response was cued to stop in conditions where the anticipated action of the hands were synchronous, but not when asynchronous. Response delays reflected the integration of actions of both hands into a unitary response.


Assuntos
Lateralidade Funcional , Mãos/fisiologia , Destreza Motora , Inibição Neural , Adulto , Potencial Evocado Motor , Feminino , Neurônios GABAérgicos/fisiologia , Humanos , Masculino , Córtex Motor/fisiologia , Movimento , Tempo de Reação
13.
Exp Brain Res ; 237(9): 2331-2344, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31289887

RESUMO

The ability to acquire and retain novel motor skills is preserved with advancing age. However, the neurophysiological mechanisms underlying skill acquisition in older adults have received little systematic investigation. The aim of the present study was to assess the modulation of primary motor cortex excitability and inhibition after skill acquisition in young and older adults. Sixteen young and sixteen older adults trained on a sequential visual isometric wrist extension task. Anodal or sham transcranial direct current stimulation was applied during training in a pseudorandomized crossover design. Skill was quantified before, immediately after, 24 h and 7 days post-training. Transcranial magnetic stimulation protocols were used to examine corticomotor excitability and intracortical inhibition pre- and post-training. Corticomotor excitability increased and intracortical inhibition decreased after skill acquisition in both age groups. Anodal transcranial direct current stimulation did not enhance skill acquisition or the modulation of neurophysiological variables. These findings indicate potential neurophysiological mechanisms relevant for motor learning in neurorehabilitation contexts involving older adults, such as after stroke.


Assuntos
Potencial Evocado Motor/fisiologia , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Músculo Esquelético/fisiologia , Inibição Neural/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletromiografia , Feminino , Humanos , Masculino , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Adulto Jovem
14.
Brain Stimul ; 12(4): 938-947, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30850217

RESUMO

BACKGROUND: Non-invasive neuromodulation may provide treatment strategies for neurological deficits affecting movement, such as stroke. For example, weak electrical stimulation applied to the hand by wearing a "mesh glove" (MGS) can transiently increase primary motor cortex (M1) excitability. Conversely, transcranial direct current stimulation with the cathode over M1 (c-tDCS) can decrease corticomotor excitability. OBJECTIVE/HYPOTHESIS: We applied M1 c-tDCS as a priming adjuvant to MGS and hypothesised metaplastic effects would be apparent in improved motor performance and modulation of M1 inhibitory and facilitatory circuits. METHODS: Sixteen right-handed neurologically healthy individuals participated in a repeated measures cross-over study; nine minutes of sham- or c-tDCS followed by 30 min of suprasensory threshold MGS. Dexterity of the non-dominant (left) hand was assessed using the grooved pegboard task, and measures of corticomotor excitability, intracortical facilitation, short-latency afferent inhibition (SAI), short-interval intracortical inhibition (SICI), and SAI in the presence of SICI (SAIxSICI), were obtained at baseline, post-tDCS, and 0, 30 and 60 min post-MGS. RESULTS: There was a greater improvement in grooved pegboard completion times with c-tDCS primed MGS than sham + MGS. There was also more pronounced disinhibition of SAI. However, disinhibition of SAI in the presence of SICI was less and rest motor threshold higher compared to sham + MGS. CONCLUSIONS: The results indicate a metaplastic modulation of corticomotor excitability with c-tDCS primed MGS. Further studies are warranted to determine how various stimulation approaches can induce metaplastic effects on M1 neuronal circuits to boost functional gains obtained with motor practice.


Assuntos
Mãos/fisiologia , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Estudos Cross-Over , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Atividade Motora/fisiologia , Movimento/fisiologia , Inibição Neural/fisiologia , Distribuição Aleatória , Adulto Jovem
15.
Neurorehabil Neural Repair ; 33(2): 130-140, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30744527

RESUMO

BACKGROUND: Stroke is a leading cause of adult disability owing largely to motor impairment and loss of function. After stroke, there may be abnormalities in γ-aminobutyric acid (GABA)-mediated inhibitory function within primary motor cortex (M1), which may have implications for residual motor impairment and the potential for functional improvements at the chronic stage. OBJECTIVE: To quantify GABA neurotransmission and concentration within ipsilesional and contralesional M1 and determine if they relate to upper limb impairment and function at the chronic stage of stroke. METHODS: Twelve chronic stroke patients and 16 age-similar controls were recruited for the study. Upper limb impairment and function were assessed with the Fugl-Meyer Upper Extremity Scale and Action Research Arm Test. Threshold tracking paired-pulse transcranial magnetic stimulation protocols were used to examine short- and long-interval intracortical inhibition and late cortical disinhibition. Magnetic resonance spectroscopy was used to evaluate GABA concentration. RESULTS: Short-interval intracortical inhibition was similar between patients and controls ( P = .10). Long-interval intracortical inhibition was greater in ipsilesional M1 compared with controls ( P < .001). Patients who did not exhibit late cortical disinhibition in ipsilesional M1 were those with greater upper limb impairment and worse function ( P = .002 and P = .017). GABA concentration was lower within ipsilesional ( P = .009) and contralesional ( P = .021) M1 compared with controls, resulting in an elevated excitation-inhibition ratio for patients. CONCLUSION: These findings indicate that ipsilesional and contralesional M1 GABAergic inhibition are altered in this small cohort of chronic stroke patients. Further study is warranted to determine how M1 inhibitory networks might be targeted to improve motor function.


Assuntos
Córtex Motor/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Inibição Neural , Acidente Vascular Cerebral/fisiopatologia , Extremidade Superior/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Eletromiografia , Potencial Evocado Motor , Feminino , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Transtornos dos Movimentos/diagnóstico por imagem , Transtornos dos Movimentos/etiologia , Imagem Multimodal , Receptores de GABA-B/metabolismo , Acidente Vascular Cerebral/diagnóstico por imagem , Estimulação Magnética Transcraniana , Ácido gama-Aminobutírico/metabolismo
16.
Eur J Neurosci ; 48(5): 2247-2258, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30071145

RESUMO

Interhemispheric inhibition between bilateral motor cortices is important for the performance of unimanual activities and may be compromised with advancing age. Conventionally, interhemispheric inhibition is assessed using paired-pulse transcranial magnetic stimulation (TMS) with constant conditioning and test stimulation parameters. Adaptive threshold hunting TMS, whereby a target motor-evoked potential amplitude is maintained in the presence of the conditioning, may provide an alternative means of assessment. Furthermore, interhemispheric inhibition may suppress late indirect-waves more so than early indirect-waves which can be preferentially elicited using anterior-posterior (AP) and posterior-anterior (PA) induced currents, respectively. The aim of this study was to assess age-related effects on interhemispheric inhibition using both conventional and threshold hunting techniques with PA- and AP-induced current. In 15 young and 15 older adults, short (10 ms) and long (40 ms) interval interhemispheric inhibition was examined in the nondominant extensor carpi radialis muscle at rest and during voluntary extension of the contralateral wrist. With the conventional technique, there were no age-related differences in short-interval interhemispheric inhibition. With threshold hunting and AP-induced current, young adults exhibited greater short-interval interhemispheric inhibition during contralateral activation compared with rest and compared with older adults. Furthermore, long-interval interhemispheric inhibition was greater in older adults compared with young for both conventional and threshold hunting techniques. Age-related differences in interhemispheric inhibition are evident with threshold hunting using PA- and AP-induced current.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Inibição Neural/fisiologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Eletromiografia/métodos , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Esportes , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
17.
Brain Stimul ; 11(6): 1296-1305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30033042

RESUMO

BACKGROUND: In human primary motor cortex (M1), the paired-pulse transcranial magnetic stimulation (TMS) paradigm of short-interval intracortical inhibition (SICI) can be expressed conventionally as a percent change in the relative amplitude of a conditioned motor evoked potential to non-conditioned; or adaptive threshold-hunting a target motor evoked potential amplitude in the absence or presence of a conditioning stimulus, and noting the relative change in stimulation intensity. The suitability of each approach may depend on the induced current direction, which probe separate M1 interneuronal populations. OBJECTIVE: To examine the influence of conditioning stimulus intensity, interstimulus interval (ISI) and current direction for adaptive threshold-hunting and conventional SICI using equivalent TMS intensities. METHODS: In 16 participants (21-32 years), SICI was examined using adaptive threshold-hunting and conventional paired-pulse TMS with posterior-anterior and anterior-posterior stimulation, ISIs of 2 and 3 ms, and a range of conditioning intensities. RESULTS: Inhibition with adaptive threshold-hunting was greater for anterior-posterior stimulation with an ISI of 3 ms (23.6 ±â€¯9.0%) compared with 2 ms (7.5 ±â€¯7.8%, P < 0.001) and posterior-anterior stimulation at both ISIs (2 ms 8.6 ±â€¯8.7%, 3 ms 5.9 ±â€¯4.8%; P < 0.001). There was an association between inhibition obtained with conventional and adaptive threshold-hunting for posterior-anterior but not anterior-posterior stimulation (2 ms only, r = 0.68, P = 0.03). CONCLUSIONS: More inhibition was evident with anterior-posterior than posterior-anterior current for both adaptive threshold-hunting and conventional paired-pulse TMS. Assessment of SICI with anterior-posterior stimulation was not directly comparable between the two approaches. However, the amount of inhibition was dependent on conditioning stimulus intensity and ISI for both SICI techniques.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Condicionamento Clássico/fisiologia , Condicionamento Operante/fisiologia , Eletromiografia/métodos , Feminino , Humanos , Interneurônios/fisiologia , Masculino
18.
J Physiol ; 596(13): 2597-2609, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29667190

RESUMO

KEY POINTS: The response to neuroplasticity interventions using transcranial magnetic stimulation (TMS) is reduced in older adults, which may be due, in part, to age-related alterations in interneuronal (I-wave) circuitry. The current study investigated age-related changes in interneuronal characteristics and whether they influence motor cortical plasticity in older adults. While I-wave recruitment was unaffected by age, there was a shift in the temporal characteristics of the late, but not the early I-waves. Using I-wave periodicity repetitive TMS (iTMS), we showed that these differences in I-wave characteristics influence the induction of cortical plasticity in older adults. ABSTRACT: Previous research shows that neuroplasticity assessed using transcranial magnetic stimulation (TMS) is reduced in older adults. While this deficit is often assumed to represent altered synaptic modification processes, age-related changes in the interneuronal circuits activated by TMS may also contribute. Here we assessed age-related differences in the characteristics of the corticospinal indirect (I) waves and how they influence plasticity induction in primary motor cortex. Twenty young (23.7 ± 3.4 years) and 19 older adults (70.6 ± 6.0 years) participated in these studies. I-wave recruitment was assessed by changing the direction of the current used to activate the motor cortex, whereas short-interval intracortical facilitation (SICF) was recorded to assess facilitatory I-wave interactions. In a separate study, I-wave periodicity TMS (iTMS) was used to examine the effect of I-wave latency on motor cortex plasticity. Data from the motor-evoked potential (MEP) onset latency produced using different coil orientations suggested that there were no age-related differences in preferential I-wave recruitment (P = 0.6). However, older adults demonstrated significant reductions in MEP facilitation at all 3 SICF peaks (all P values < 0.05) and a delayed latency of the second and third SICF peaks (all P values < 0.05). Using I-wave intervals that were optimal for young and older adults, these changes in the late I-waves were shown to influence the plasticity response in older adults after iTMS. These findings suggest that temporal characteristics are delayed for the late I-waves in older adults, and that optimising TMS interventions based on I-wave characteristics may improve the plasticity response in older adults.


Assuntos
Potencial Evocado Motor , Córtex Motor/fisiologia , Plasticidade Neuronal , Estimulação Magnética Transcraniana/métodos , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Adulto Jovem
19.
Exp Brain Res ; 236(6): 1651-1663, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29610948

RESUMO

Primary motor cortex excitability can be modulated by anodal and cathodal transcranial direct current stimulation (tDCS). These neuromodulatory effects may, in part, be dependent on modulation within gamma-aminobutyric acid (GABA)-mediated inhibitory networks. GABAergic function can be quantified non-invasively using adaptive threshold hunting paired-pulse transcranial magnetic stimulation (TMS). The previous studies have used TMS with posterior-anterior (PA) induced current to assess tDCS effects on inhibition. However, TMS with anterior-posterior (AP) induced current in the brain provides a more robust measure of GABA-mediated inhibition. The aim of the present study was to assess the modulation of corticomotor excitability and inhibition after anodal and cathodal tDCS using TMS with PA- and AP-induced current. In 16 young adults (26 ± 1 years), we investigated the response to anodal, cathodal, and sham tDCS in a repeated-measures double-blinded crossover design. Adaptive threshold hunting paired-pulse TMS with PA- and AP-induced current was used to examine separate interneuronal populations within M1 and their influence on corticomotor excitability and short- and long-interval inhibition (SICI and LICI) for up to 60 min after tDCS. Unexpectedly, cathodal tDCS increased corticomotor excitability assessed with AP (P = 0.047) but not PA stimulation (P = 0.74). SICIAP was reduced after anodal tDCS compared with sham (P = 0.040). Pearson's correlations indicated that SICIAP and LICIAP modulation was associated with corticomotor excitability after anodal (P = 0.027) and cathodal tDCS (P = 0.042). The after-effects of tDCS on corticomotor excitability may depend on the direction of the TMS-induced current used to make assessments, and on modulation within GABA-mediated inhibitory circuits.


Assuntos
Adaptação Fisiológica/fisiologia , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos , Adulto , Estudos Cross-Over , Método Duplo-Cego , Eletromiografia , Feminino , Humanos , Masculino , Adulto Jovem
20.
J Neurophysiol ; 119(3): 877-886, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212923

RESUMO

We routinely cancel preplanned movements that are no longer required. If stopping is forewarned, proactive processes are engaged to selectively decrease motor cortex excitability. However, without advance information there is a nonselective reduction in motor cortical excitability. In this study we examined modulation of human primary motor cortex inhibitory networks during response inhibition tasks with informative and uninformative cues using paired-pulse transcranial magnetic stimulation. Long- (LICI) and short-interval intracortical inhibition (SICI), indicative of GABAB- and GABAA-receptor mediated inhibition, respectively, were examined from motor evoked potentials obtained in task-relevant and task-irrelevant hand muscles when response inhibition was preceded by informative and uninformative cues. When the participants (10 men and 8 women) were cued to stop only a subcomponent of the bimanual response, the remaining response was delayed, and the extent of delay was greatest in the more reactive context, when cues were uninformative. For LICI, inhibition was reduced in both muscles during all types of response inhibition trials compared with the pre-task resting baseline. When cues were uninformative and left-hand responses were suddenly canceled, task-relevant LICI positively correlated with response times of the responding right hand. In trials where left-hand responding was highly probable or known (informative cues), task-relevant SICI was reduced compared with that when cued to rest, revealing a motor set indicative of responding. These novel findings indicate that the GABAB-receptor-mediated pathway may set a default inhibitory tone according to task context, whereas the GABAA-receptor-mediated pathways are recruited proactively with response certainty. NEW & NOTEWORTHY We examined how informative and uninformative cues that trigger both proactive and reactive processes modulate GABAergic inhibitory networks within human primary motor cortex. We show that GABAB inhibition was released during the task regardless of cue type, whereas GABAA inhibition was reduced when responding was highly probable or known compared with rest. GABAB-receptor-mediated inhibition may set a default inhibitory tone, whereas GABAA circuits may be modulated proactively according to response certainty.


Assuntos
Inibição Psicológica , Córtex Motor/fisiologia , Inibição Neural , Desempenho Psicomotor , Adolescente , Adulto , Sinais (Psicologia) , Potencial Evocado Motor , Feminino , Mãos/inervação , Mãos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...